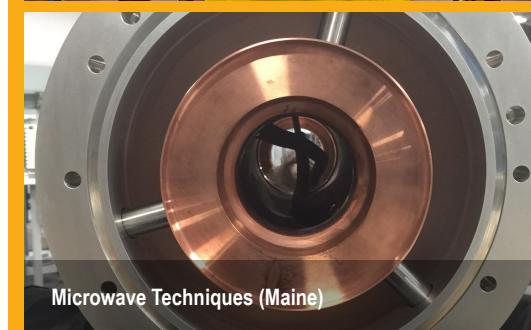


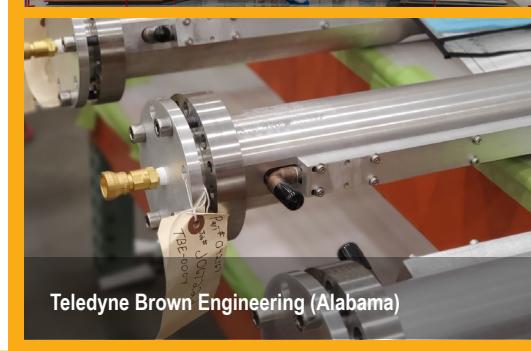
The United States' participation in ITER has nourished the growth of fusion industry and will continue to inform the development of fusion as a practical energy source.

More than 800 companies in 46 states have contributed to US ITER. These companies have established the capability to produce first-of-a-kind components and technology as they deliver innovative fusion engineering, testing, and manufacturing for ITER technical systems. U.S. industry benefits further through growth of the fusion supply chain and workforce, plus access to ITER information relevant for a variety of fusion and high-tech manufacturing efforts.

The international ITER collaboration is building a fusion research and development platform to provide scientific and technological understanding of an industry-scale self-sustained fusion power source for hundreds of seconds with up to 500 megawatts of fusion power and a fusion power gain (Q) of 10. This is essential knowledge for industry to evolve from concepts to practical fusion systems. Most US ITER funding for hardware contributions goes to U.S. industry, universities, and national laboratories to support research and development, design, and manufacturing for 12 essential ITER systems.


800+ COMPANIES IN 46 STATES HAVE CONTRIBUTED TO US ITER

ITER site, 2025.


ARMEC Corp. (Tennessee)

Microwave Techniques (Maine)

General Atomics (California)

Teledyne Brown Engineering (Alabama)

U.S. DEPARTMENT
of ENERGY

OAK RIDGE
National Laboratory

PPPL
PRINCETON
PLASMA PHYSICS
LABORATORY

Savannah River
National Laboratory®

KEY CONTRACTS AND AWARDS

General Atomics
San Diego, California

Vacuum Technology Distribution, Inc.
Oak Ridge, Tennessee

Precision Custom Components
York, Pennsylvania

Luvata Waterbury
Waterbury, Connecticut

Precision Fabrication/Cleaning
Cocoa, Florida

Teledyne Brown Engineering, Inc.
Huntsville, Alabama

Oxford Superconducting Technology
Carteret, New Jersey

Gem Technology International
Miami, Florida

ARMEC Corp.
Oak Ridge, Tennessee

Cable-in-Conduit Engineering
Tallahassee, Florida

VAT, Inc.
San Jose, California

Keller Technology Corporation
Tonawanda, New York

Schneider Electric
Chicago, Illinois

Nova Photonics
Princeton, New Jersey

Inovoal Corp.
Houston, Texas

Superbolt
Carnegie, Pennsylvania

Petersen, Inc.
Ogden, Utah

New England Wire Technologies
Lisbon, New Hampshire

AMSPEC
Denver, Colorado

Schneider Electric
Boston, Massachusetts

Hamill Manufacturing
Traford, Pennsylvania

Cosylab USA
Palo Alto, California

Ionex Research Corp.
Lafayette, Colorado

Major Tool & Machine, Inc.
Indianapolis, Indiana

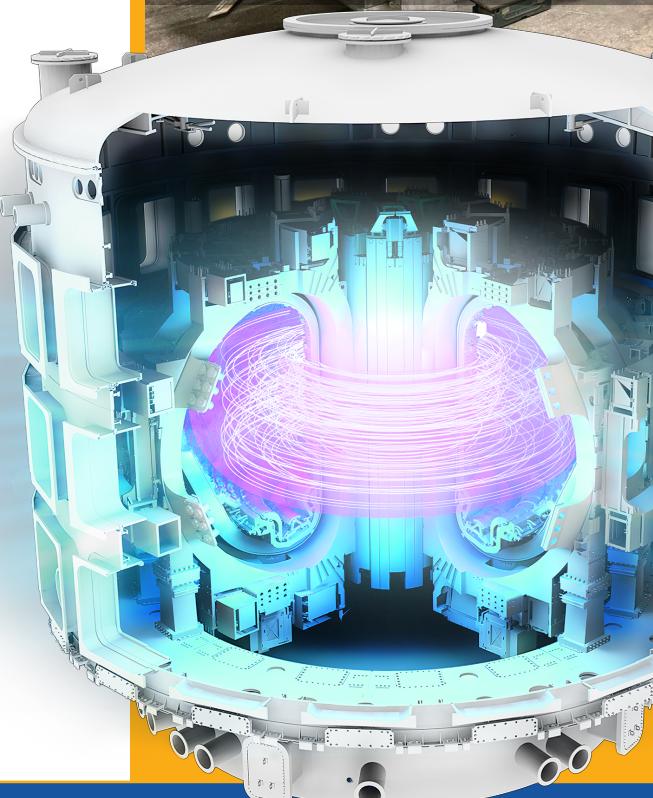
Dielectric Communications
Raymond, Maine

Pfeiffer Vacuum
Nashua, New Hampshire

Siemens Corp.
Lexington, North Carolina

PMC Engineering
Danbury, Connecticut

**Microwave Techniques
(Mega Industries)**
Gorham, Maine


Dymnenso
San Francisco, California

Eaton Corporation
Cleveland, Ohio

Kamatics
Bloomfield, Connecticut

Rhinstahl
Mason, Ohio

Credits: Front page: ITER site photo, 2025, ITER Organization/EFJ Riche; photo of ARMEC component: Oak Ridge National Laboratory. Back page: ITER tokamak illustration, Oak Ridge National Laboratory/Adam Malin

February 2026

ORNL 2026-G00135/IA2

US ITER is managed by Oak Ridge National Laboratory in Tennessee, with partner labs Princeton Plasma Physics Laboratory in New Jersey and Savannah River National Laboratory in South Carolina.